回溯算法

回溯算法

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

应用实例

八皇后问题

有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。

第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子方式。

把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,不停地检查当前放法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
if (row == 8) { // 8个棋子都放置好了,打印结果
printQueens(result);
return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
}
for (int column = 0; column < 8; ++column) { // 每一行都有8中放法
if (isOk(row, column)) { // 有些放法不满足要求
result[row] = column; // 第row行的棋子放到了column列
cal8queens(row+1); // 考察下一行
}
}
}

private boolean isOk(int row, int column) {//判断row行column列放置是否合适
int leftup = column - 1, rightup = column + 1;
for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
if (result[i] == column) return false; // 第i行的column列有棋子吗?
if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
if (result[i] == leftup) return false;
}
if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
if (result[i] == rightup) return false;
}
--leftup; ++rightup;
}
return true;
}

private void printQueens(int[] result) { // 打印出一个二维矩阵
for (int row = 0; row < 8; ++row) {
for (int column = 0; column < 8; ++column) {
if (result[row] == column) System.out.print("Q ");
else System.out.print("* ");
}
System.out.println();
}
System.out.println();
}

0-1 背包

有一个背包,背包总的承载重量是 Wkg。现在有 n 个物品,每个物品的重量不等,并且不可分割。现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2^n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。

可以把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值
// cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
// w背包重量;items表示每个物品的重量;n表示物品个数
// 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw, items, n, w);//当前物品不装进背包
if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
f(i+1,cw + items[i], items, n, w);// 当前物品装进背包
}
}

正则表达式

正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。

假设正则表达式中只包含“*”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“*”匹配任意多个(大于等于 0 个)任意字符,“?”匹配零个或者一个任意字符。

如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?

依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。

如果遇到特殊字符的时候,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Pattern {
private boolean matched = false;
private char[] pattern; // 正则表达式
private int plen; // 正则表达式长度

public Pattern(char[] pattern, int plen) {
this.pattern = pattern;
this.plen = plen;
}

public boolean match(char[] text, int tlen) { // 文本串及长度
matched = false;
rmatch(0, 0, text, tlen);
return matched;
}

private void rmatch(int ti, int pj, char[] text, int tlen) {
if (matched) return; // 如果已经匹配了,就不要继续递归了
if (pj == plen) { // 正则表达式到结尾了
if (ti == tlen) matched = true; // 文本串也到结尾了
return;
}
if (pattern[pj] == '*') { // *匹配任意个字符
for (int k = 0; k <= tlen-ti; ++k) {
rmatch(ti+k, pj+1, text, tlen);
}
} else if (pattern[pj] == '?') { // ?匹配0个或者1个字符
rmatch(ti, pj+1, text, tlen);
rmatch(ti+1, pj+1, text, tlen);
} else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
rmatch(ti+1, pj+1, text, tlen);
}
}
}
查看评论