贪心算法

贪心算法

贪心算法解决问题的步骤:

  1. 针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。当看到这类问题的时候,首先要联想到贪心算法。
  2. 尝试看这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。
  3. 第三步,举几个例子看下贪心算法产生的结果是否是最优的。

贪心算法实战分析

  1. 分糖果

    有 m 个糖果和 n 个孩子。现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。

    每个糖果的大小不等,这 m 个糖果的大小分别是 s1,s2,s3,……,sm。除此之外,每个孩子对糖果大小的需求也是不一样的,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这 n 个孩子对糖果大小的需求分别是 g1,g2,g3,……,gn。

    如何分配糖果,能尽可能满足最多数量的孩子?

    抽象问题:从 n 个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数 m。

    对于一个孩子来说,如果小的糖果可以满足,就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对期望值的贡献是一样的。

    每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。

  2. 钱币找零

    假设有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付 K 元,最少要用多少张纸币呢?

    先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。

  3. 区间覆盖

    假设有 n 个区间,区间的起始端点和结束端点分别是[l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。我们从这 n 个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?

    解决思路:假设这 n 个区间中最左端点是 lmin,最右端点是 rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将[lmin, rmax]覆盖上。我们按照起始端点从小到大的顺序对这 n 个区间排序。

    每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。

贪心算法实现Huffman压缩编码

假设有一个包含 1000 个字符的文件,每个字符占 1 个 byte(1byte=8bits),存储这 1000 个字符就一共需要 8000bits,那有没有更加节省空间的存储方式呢?

假设通过统计分析发现,这 1000 个字符中只包含 6 种不同字符,假设它们分别是 a、b、c、d、e、f。而 3 个二进制位(bit)就可以表示 8 个不同的字符,所以,为了尽量减少存储空间,每个字符我们用 3 个二进制位来表示。那存储这 1000 个字符只需要 3000bits 就可以了,比原来的存储方式节省了很多空间。不过,还有没有更加节省空间的存储方式呢?

1
a(000)、b(001)、c(010)、d(011)、e(100)、f(101)

霍夫曼编码是一种十分有效的编码方法,广泛用于数据压缩中,其压缩率通常在 20%~90% 之间。

霍夫曼编码不仅会考察文本中有多少个不同字符,还会考察每个字符出现的频率,根据频率的不同,选择不同长度的编码。霍夫曼编码试图用这种不等长的编码方法,来进一步增加压缩的效率。

如何给不同频率的字符选择不同长度的编码呢?根据贪心的思想,可以把出现频率比较多的字符,用稍微短一些的编码;出现频率比较少的字符,用稍微长一些的编码。

对于等长的编码来说,解压缩起来很简单。比如用 3 个 bit 表示一个字符。在解压缩的时候,每次从文本中读取 3 位二进制码,然后翻译成对应的字符。

但是,霍夫曼编码是不等长的,每次应该读取 1 位还是 2 位、3 位等等来解压缩呢?这个问题就导致霍夫曼编码解压缩起来比较复杂。为了避免解压缩过程中的歧义,霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况。

霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况。

假设这 6 个字符出现的频率从高到低依次是 a、b、c、d、e、f。把它们编码下面这个样子,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会歧义。

根据字符出现频率的不同,给不同的字符进行不同长度的编码

把每个字符看作一个节点,并且附带着把频率放到优先级队列中。从队列中取出频率最小的两个节点 A、B,然后新建一个节点 C,把频率设置为两个节点的频率之和,并把这个新节点 C 作为节点 A、B 的父节点。最后再把 C 节点放入到优先级队列中。重复这个过程,直到队列中没有数据。

给每一条边加上画一个权值,指向左子节点的边标记为 0,指向右子节点的边,标记为 1,那从根节点到叶节点的路径就是叶节点对应字符的霍夫曼编码。

查看评论