散列表

散列表

散列表(Hash Table),也叫“哈希表”或者“Hash 表”

散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。

散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

散列函数

散列函数,顾名思义,它是一个函数。我们可以把它定义成 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。

散列函数设计的基本要求:

  1. 散列函数计算得到的散列值是一个非负整数;
  2. 如果 key1 = key2,那 hash(key1) == hash(key2);
  3. 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。

散列冲突

再好的散列函数也无法避免散列冲突

  1. 开放寻址法

    开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。

    1. 线性探测(Linear Probing)

      插入数据
      往散列表中插入数据时,如果某个数据经过散列函数散列之后,存储位置已经被占用了,就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。

      散列表的大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。

      于是顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找,直到找到空闲位置 2,于是将其插入到这个位置。

      查找数据

      在散列表中查找元素的过程有点儿类似插入过程。

      通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素。如果相等,则说明就是我们要找的元素;否则就顺序往后依次查找。如果遍历到数组中的空闲位置,还没有找到,就说明要查找的元素并没有在散列表中。

      删除数据

      删除数据时,不能单纯地把要删除的元素设置为空

      因为在查找的时候,一旦通过线性探测方法,找到一个空闲位置,就可以认定散列表中不存在这个数据。但是,如果这个空闲位置是我们后来删除的,就会导致原来的查找算法失效。本来存在的数据,会被认定为不存在。

      将删除的元素,特殊标记为 deleted。当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。

**线性探测问题:**当散列表中插入的数据越来越多时,散列冲突发生的可能性就会越来越大,空闲位置会越来越少,线性探测的时间就会越来越久。极端情况下,可能需要探测整个散列表,所以最坏情况下的时间复杂度为 O(n)。同理,在删除和查找时,也有可能会线性探测整张散列表,才能找到要查找或者删除的数据。
  1. 二次探测(Quadratic probing)

    所谓二次探测,跟线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0,hash(key)+1,hash(key)+2……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0,hash(key)+12,hash(key)+22……

  2. 双重散列(Double hashing)

    所谓双重散列,意思就是不仅要使用一个散列函数。我们使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。

不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。

散列表的装载因子=填入表中的元素个数/散列表的长度

装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

  1. 链表法

    在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。

    当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1)。

    当查找、删除一个元素时,同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。

    时间复杂度跟链表的长度 k 成正比,也就是 O(k)。对于散列比较均匀的散列函数来说,理论上讲,k=n/m,其中 n 表示散列中数据的个数,m 表示散列表中“槽”的个数。

如何选择冲突解决方法?

  1. 开放寻址法

    优点:开放寻址法不像链表法,需要拉很多链表。散列表中的数据都存储在数组中,可以有效地利用 CPU 缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。

    缺点:

    1. 用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。
    2. 而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。

    当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。

  2. 链表法

    优点:

    1. 首先,链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。
    2. 链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。

    缺点:

    1. 链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,还有可能会让内存的消耗翻倍。
    2. 因为链表中的结点是零散分布在内存中的,不是连续的,所以对 CPU 缓存是不友好的,这方面对于执行效率也有一定的影响。

    基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

如何设计散列函数?

  1. 散列函数的设计不能太复杂

    过于复杂的散列函数,势必会消耗很多计算时间,也就间接地影响到散列表的性能

  2. 散列函数生成的值要尽可能随机并且均匀分布

    这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况

装载因子过大了怎么办?

装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大。不仅插入数据的过程要多次寻址或者拉很长的链,查找的过程也会因此变得很慢。

针对散列表,当装载因子过大时,可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。

针对散列表的扩容,因为散列表的大小变了,数据的存储位置也变了,所以需要通过散列函数重新计算每个数据的存储位置。

装载因子阈值的设置要权衡时间、空间复杂度。如果内存空间不紧张,对执行效率要求很高,可以降低负载因子的阈值;相反,如果内存空间紧张,对执行效率要求又不高,可以增加负载因子的值,甚至可以大于 1。

时间复杂度

  1. 插入数据时间复杂度

    最好时间复杂度:插入一个数据,最好情况下,不需要扩容,最好时间复杂度是 O(1)。

    最坏时间复杂度:最坏情况下,散列表装载因子过高,启动扩容,需要重新申请内存空间,重新计算哈希位置,并且搬移数据,所以时间复杂度是 O(n)。

    摊还时间复杂度:用摊还分析法,均摊情况下,时间复杂度接近最好情况,就是 O(1)。

  2. 删除数据时间复杂度

    删除数据时间复杂度为O(1)。

    对于动态散列表,随着数据的删除,散列表中的数据会越来越少,空闲空间会越来越多。如果我们对空间消耗非常敏感,我们可以在装载因子小于某个值之后,启动动态缩容。

如何避免低效的扩容?

为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。

当有新数据要插入时,将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,都重复上面的过程。

经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。

对于查询操作,为了兼容了新、老散列表中的数据,先从新散列表中查找,如果没有找到,再去老的散列表中查找。

通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是 O(1)。

工业级散列表举例分析(Java HashMap)

  1. 初始大小

    HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。

  2. 装载因子和动态扩容

    最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。

  3. 散列冲突解决方法

    HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。

    在 JDK1.8 版本中,为了对 HashMap 做进一步优化,引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。但不是所有的链表长度为8后都会转成树,还需要判断存放key值的数组桶长度是否小于64。如果小于则需要扩容,扩容后链表上的数据会被拆分散列的相应的桶节点上,也就把链表长度缩短了。

    可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。

  4. 散列函数

    1
    2
    3
    4
    int hash(Object key) {
    int h = key.hashCode();
    return (h ^ (h >>> 16)) & (capicity -1); //capicity表示散列表的大小
    }

    hashCode() 返回的是 Java 对象的 hash code。比如 String 类型的对象的 hashCode() 就是下面这样:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    public int hashCode() {
    int var1 = this.hash;
    if(var1 == 0 && this.value.length > 0) {
    char[] var2 = this.value;
    for(int var3 = 0; var3 < this.value.length; ++var3) {
    var1 = 31 * var1 + var2[var3];
    }
    this.hash = var1;
    }
    return var1;
    }

问题:如何设计一个工业级的散列函数?

何为一个工业级的散列表?工业级的散列表应该具有哪些特性?

  1. 支持快速地查询、插入、删除操作;
  2. 内存占用合理,不能浪费过多的内存空间;
  3. 性能稳定,极端情况下,散列表的性能也不会退化到无法接受的情况。

设计思路:

  1. 设计一个合适的散列函数;
  2. 定义装载因子阈值,并且设计动态扩容策略;
  3. 选择合适的散列冲突解决方法。

LRU 缓存淘汰算法

借助散列表,可以把 LRU 缓存淘汰算法的时间复杂度降低为 O(1)

如何通过链表实现 LRU 缓存淘汰算法?

需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,直接将链表头部的结点删除。

当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。

一个缓存(cache)系统主要包含下面这几个操作:

  1. 往缓存中添加一个数据;
  2. 从缓存中删除一个数据;
  3. 在缓存中查找一个数据。

单纯地采用链表的话,时间复杂度只能是 O(n)

将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)

使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext

散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。

如何查找一个数据:散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,可以很快地在缓存中找到一个数据。当找到数据之后,还需要将它移动到双向链表的尾部。

如何删除一个数据:需要找到数据所在的结点,然后将结点删除。借助散列表,可以在 O(1) 时间复杂度里找到要删除的结点。因为链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。

如何添加一个数据:需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。

查看评论