树
二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?
树(Tree)
A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。没有父节点的节点叫做根节点,也就是图中的节点 E。我们把没有子节点的节点叫做叶子节点或者叶节点,比如图中的 G、H、I、J、K、L 都是叶子节点。
高度(Height):节点到叶子结点的最长路径(边数) (树的高度 = 根节点的高度)
深度(Depth):根节点到这个节点所经历的边得个数
层(Level):节点的深度 + 1
二叉树(Binary Tree)
二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点和右子节点。
满二叉树:编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做满二叉树。
完全二叉树:编号 3 的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做完全二叉树。
如何求一棵包含 n 个节点的完全二叉树的高度?
包含 n 个节点的完全二叉树中,第一层包含 1 个节点,第二层包含 2 个节点,第三层包含 4 个节点,依次类推,下面一层节点个数是上一层的 2 倍,第 K 层包含的节点个数就是 2^(K-1)。
最后一层的节点个数包含的节点个数在 1 个到 2^(L-1) 个之间(假设最大层数是 L)
1
2n >= 1+2+4+8+...+2^(L-2)+1
n <= 1+2+4+8+...+2^(L-2)+2^(L-1)L 的范围是[log2(n+1), log2n +1]
完全二叉树的层数小于等于 log2n +1,也就是说,完全二叉树的高度小于等于 log2n。
如何表示(或者存储)一棵二叉树?
想要存储一棵二叉树,有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。
链式存储法
每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针
顺序存储法
根节点存储在下标 i = 1 的位置
左子节点存储在下标 2 * i = 2 的位置
右子节点存储在 2 * i + 1 = 3 的位置
如果节点 X 存储在数组中下标为 i 的位置,下标为 2 i 的位置存储的就是左子节点,下标为 2 i + 1 的位置存储的就是右子节点。反过来,下标为 i/2 的位置存储就是它的父节点。
完全二叉树,用数组存储是最节省内存的一种方式
二叉树的遍历
二叉树的前、中、后序遍历就是一个递归的过程
1 |
|
1 |
|
每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数 n 成正比,也就是说二叉树遍历的时间复杂度是 O(n)
中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n)
二叉查找树(Binary Search Tree)
二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。
二叉查找树的查找操作
先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23public class BinarySearchTree {
private Node tree;
public Node find(int data) {
Node p = tree;
while (p != null) {
if (data < p.data) p = p.left;
else if (data > p.data) p = p.right;
else return p;
}
return null;
}
public static class Node {
private int data;
private Node left;
private Node right;
public Node(int data) {
this.data = data;
}
}
}二叉查找树的插入操作
新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。
如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23public void insert(int data) {
if (tree == null) {
tree = new Node(data);
return;
}
Node p = tree;
while (p != null) {
if (data > p.data) {
if (p.right == null) {
p.right = new Node(data);
return;
}
p = p.right;
} else { // data < p.data
if (p.left == null) {
p.left = new Node(data);
return;
}
p = p.left;
}
}
}二叉查找树的删除操作
- 如果要删除的节点没有子节点,只需要直接将父节点中,指向要删除节点的指针置为 null
- 如果要删除的节点只有一个子节点(只有左子节点或者右子节点),只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了
- 如果要删除的节点有两个子节点,需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33public void delete(int data) {
Node p = tree; // p指向要删除的节点,初始化指向根节点
Node pp = null; // pp记录的是p的父节点
while (p != null && p.data != data) {
pp = p;
if (data > p.data) p = p.right;
else p = p.left;
}
if (p == null) return; // 没有找到
// 要删除的节点有两个子节点
if (p.left != null && p.right != null) { // 查找右子树中最小节点
Node minP = p.right;
Node minPP = p; // minPP表示minP的父节点
while (minP.left != null) {
minPP = minP;
minP = minP.left;
}
p.data = minP.data; // 将minP的数据替换到p中
p = minP; // 下面就变成了删除minP了
pp = minPP;
}
// 删除节点是叶子节点或者仅有一个子节点
Node child; // p的子节点
if (p.left != null) child = p.left;
else if (p.right != null) child = p.right;
else child = null;
if (pp == null) tree = child; // 删除的是根节点
else if (pp.left == p) pp.left = child;
else pp.right = child;
}二叉查找树的其他操作
二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点
支持重复数据的二叉查找树
二叉查找树也可以存储包含很多字段的对象
利用对象的某个字段作为键值(key)来构建二叉查找树。对象中的其他字段叫作卫星数据。
问题:如果存储的两个对象键值相同,这种情况该怎么处理呢?
二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。
每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点的右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理。
当要查找数据的时候,遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,直到遇到叶子节点,才停止。这样就可以把键值等于要查找值的所有节点都找出来。
二叉查找树的时间复杂度分析
最坏情况时间复杂度:O(n)
最好情况时间复杂度:二叉查找树是一棵完全二叉树(或满二叉树),跟树的高度成正比,也就是 O(height)
问题:相对散列表,为什么还要用二叉查找树呢?
- 第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。
- 散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。
- 尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
- 第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
- 最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。
红黑树
什么是“平衡二叉查找树”?
平衡二叉树的严格定义是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于 1。
很多平衡二叉查找树其实并没有严格符合上面的定义(树中任意一个节点的左右子树的高度相差不能大于 1)。比如红黑树,它从根节点到各个叶子节点的最长路径,有可能会比最短路径大一倍。
如何定义一棵“红黑树”?
红黑树(Red-Black Tree,简称 R-B Tree),是一种不严格的平衡二叉查找树。
顾名思义,红黑树中的节点,一类被标记为黑色,一类被标记为红色。除此之外,一棵红黑树还需要满足这样几个要求:
- 根节点是黑色的;
- 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
- 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
- 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;
为什么说红黑树是“近似平衡”的?
平衡二叉查找树的初衷,是为了解决二叉查找树因为动态更新导致的性能退化问题。所以,“平衡”的意思可以等价为性能不退化。“近似平衡”就等价为性能不会退化得太严重。
红黑树的高度分析
首先,如果将红色节点从红黑树中去掉,那单纯包含黑色节点的红黑树的高度是多少呢?
红色节点删除之后,有些节点就没有父节点了,它们会直接拿这些节点的祖父节点(父节点的父节点)作为父节点。所以,之前的二叉树就变成了四叉树。
红黑树的定义中:从任意节点到可达的叶子节点的每个路径包含相同数目的黑色节点。
从四叉树中取出某些节点,放到叶节点位置,四叉树就变成了完全二叉树。所以,仅包含黑色节点的四叉树的高度,比包含相同节点个数的完全二叉树的高度还要小。
把红色节点加回去,高度会变成多少呢?
红黑树的定义中:任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;也就是说,有一个红色节点就要至少有一个黑色节点,将它跟其他红色节点隔开。
红黑树中包含最多黑色节点的路径不会超过 log2n,所以加入红色节点之后,最长路径不会超过 2log2nn,也就是说,红黑树的高度近似 2log2n。
实现红黑树的基本思想
一棵合格的红黑树需要满足这样几个要求:
- 根节点是黑色的;
- 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
- 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
- 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点。
在插入、删除节点的过程中,第三、第四点要求可能会被破坏,而红黑树的“平衡调整”,实际上就是要把被破坏的第三、第四点恢复过来。
左旋(rotate left)围绕某个节点的左旋、右旋(rotate right)围绕某个节点的右旋
插入删除平衡调整
插入操作的平衡调整
红黑树规定,插入的节点必须是红色的。而且,二叉查找树中新插入的节点都是放在叶子节点上
- 如果插入节点的父节点是黑色的,什么都不用做,它仍然满足红黑树的定义。
- 如果插入的节点是根节点,那我们直接改变它的颜色,把它变成黑色就可以了。
- 其他违背红黑树定义的情况。(左右旋转和改变颜色)
正在处理的节点叫做关注节点
如果关注节点是 a,它的叔叔节点 d 是红色
- 将关注节点 a 的父节点 b、叔叔节点 d 的颜色都设置成黑色;
- 将关注节点 a 的祖父节点 c 的颜色设置成红色;
- 关注节点变成 a 的祖父节点 c;
- 跳到 CASE 2 或者 CASE 3。
如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点
- 关注节点变成节点 a 的父节点 b;
- 围绕新的关注节点b 左旋;
- 跳到 CASE 3。
如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点
- 围绕关注节点 a 的祖父节点 c 右旋;
- 将关注节点 a 的父节点 b、兄弟节点 c 的颜色互换。
- 调整结束。
删除操作的平衡调整
第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。
针对删除节点初步调整
红黑树的定义中“只包含红色节点和黑色节点”,
经过初步调整之后,为了保证满足红黑树定义的最后一条要求,有些节点会被标记成两种颜色,“红 - 黑”或者“黑 - 黑”。如果一个节点被标记为了“黑 - 黑”,那在计算黑色节点个数的时候,要算成两个黑色节点。
如果要删除的节点是 a,它只有一个子节点 b
- 删除节点 a,并且把节点 b 替换到节点 a 的位置;
- 节点 a 只能是黑色,节点 b 也只能是红色,其他情况均不符合红黑树的定义。这种情况下,我们把节点 b 改为黑色;
- 调整结束,不需要进行二次调整。
如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c
- 如果节点 a 的后继节点就是右子节点 c,那右子节点 c 肯定没有左子树。把节点 a 删除,并且将节点 c 替换到节点 a 的位置;
- 然后把节点 c 的颜色设置为跟节点 a 相同的颜色;
- 如果节点 c 是黑色,为了不违反红黑树的最后一条定义,我们给节点 c 的右子节点 d 多加一个黑色,这个时候节点 d 就成了“红 - 黑”或者“黑 - 黑”;
- 这个时候,关注节点变成了节点 d,第二步的调整操作就会针对关注节点来做。
如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点
- 找到后继节点 d,并将它删除,删除后继节点 d 的过程参照 CASE 1;
- 将节点 a 替换成后继节点 d;
- 把节点 d 的颜色设置为跟节点 a 相同的颜色;
- 如果节点 d 是黑色,为了不违反红黑树的最后一条定义,我们给节点 d 的右子节点 c 多加一个黑色,这个时候节点 c 就成了“红 - 黑”或者“黑 - 黑”;
- 这个时候,关注节点变成了节点 c,第二步的调整操作就会针对关注节点来做。
针对关注节点进行二次调整
经过初步调整之后,关注节点变成了“红 - 黑”或者“黑 - 黑”节点
如果关注节点是 a,它的兄弟节点 c 是红色的
- 围绕关注节点 a 的父节点 b 左旋;
- 关注节点 a 的父节点 b 和祖父节点 c 交换颜色;
- 关注节点不变;
- 继续从四种情况中选择适合的规则来调整。
如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的
- 将关注节点 a 的兄弟节点 c 的颜色变成红色;
- 从关注节点 a 中去掉一个黑色,这个时候节点 a 就是单纯的红色或者黑色;
- 给关注节点 a 的父节点 b 添加一个黑色,这个时候节点 b 就变成了“红 - 黑”或者“黑 - 黑”;
- 关注节点从 a 变成其父节点 b;
- 继续从四种情况中选择符合的规则来调整。
如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色
- 围绕关注节点 a 的兄弟节点 c 右旋;
- 节点 c 和节点 d 交换颜色;
- 关注节点不变;
- 跳转到 CASE 4,继续调整。
如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的
- 围绕关注节点 a 的父节点 b 左旋;
- 将关注节点 a 的兄弟节点 c 的颜色,跟关注节点 a 的父节点 b 设置成相同的颜色;
- 将关注节点 a 的父节点 b 的颜色设置为黑色;
- 从关注节点 a 中去掉一个黑色,节点 a 就变成了单纯的红色或者黑色;
- 将关注节点 a 的叔叔节点 e 设置为黑色;调整结束。
递归树
如何用递归树,来分析递归代码的时间复杂度
归并排序递归树时间复杂度
因为每次分解都是一分为二,所以代价很低,把时间上的消耗记作常量 1。
归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。把每一层归并操作消耗的时间记作 n。
只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n * h)
归并排序递归树是一棵满二叉树。满二叉树的高度大约是 log2n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)
实战一:分析快速排序的时间复杂度
快速排序在最好情况下,每次分区都能一分为二,用递推公式 T(n)=2T(n/2)+n,很容易就能推导出时间复杂度是 O(nlogn)。但是,不可能每次分区都正好一分为二。
假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(n/10)+T(9n/10)+n。
用递归树来分析快速排序的平均情况时间复杂度
快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h n ,也就是说,时间复杂度就是 O(h n)。
因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。
快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 1/10,最长的一个路径每次都乘以 9/10。通过计算可以得到,从根节点到叶子节点的最短路径是 log10n,最长的路径是 log10/9n
所以,遍历数据的个数总和就介于 nlog10n 和 nlog10/9n 之间
当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(nlogn)
对于 k 等于 9,99,甚至是 999,9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(nlogn)。所以,从概率论的角度来说,快排的平均时间复杂度就是 O(nlogn)。
实战二:分析斐波那契数列的时间复杂度
1 |
|
斐波那契数列递归树的高度
f(n) 分解为 f(n−1) 和 f(n−2),每次数据规模都是 −1 或者 −2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 −1,那最长路径大约就是 n;如果每次都是 −2,那最短路径大约就是 n/2。
每次分解之后的合并操作只需要一次加法运算,把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 22。依次类推,第 k 层的时间消耗就是 2k−1,那整个算法的总的时间消耗就是每一层时间消耗之和。
如果路径长度都为 n,那这个总和就是 2n−1。
如果路径长度都是 n/2 ,那整个算法的总的时间消耗就是 2n/2−1。
算法的时间复杂度就介于 O(2n) 和 O(2n/2) 之间
实战三:分析全排列的时间复杂度
1 |
|
如果确定了最后一位数据,那就变成了求解剩下 n−1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n 个“n−1 个数据的排列”的子问题。
1 |
|
1 |
|
第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n−1 次交换,所以第二层总的交换次数是 n (n−1)。第三层有 n (n−1) 个节点,每个节点分解需要 n−2 次交换,所以第三层总的交换次数是 n (n−1) (n−2)。
以此类推,第 k 层总的交换次数就是 n (n−1) (n−2) … (n−k+1)。最后一层的交换次数就是 n (n−1) (n−2) … 2 * 1。每一层的交换次数之和就是总的交换次数
1 |
|
最后一个数,n (n−1) (n−2) … 2 1 等于 n!,而前面的 n−1 个数都小于最后一个数,所以,总和肯定小于 n n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n * n!)
“堆”(Heap)
堆排序是一种原地的、时间复杂度为 O(nlogn) 的排序算法
堆排序不是稳定的排序算法
堆满足的两点要求:
- 堆是一个完全二叉树;
- 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。
如何实现一个堆?
完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。
数组中下标为 i 的节点的左子节点,就是下标为 i 2 的节点,右子节点就是下标为 i 2 + 1 的节点,父节点就是下标为 i/2 的节点。
堆化(heapify)
堆化有两种,从下往上和从上往下
从下往上的堆化方法
让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足堆的大小关系
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22public class Heap {
private int[] a; // 数组,从下标1开始存储数据
private int n; // 堆可以存储的最大数据个数
private int count; // 堆中已经存储的数据个数
public Heap(int capacity) {
a = new int[capacity + 1];
n = capacity;
count = 0;
}
public void insert(int data) {
if (count >= n) return; // 堆满了
++count;
a[count] = data;
int i = count;
while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
swap(a, i, i/2); // swap()函数作用:交换下标为i和i/2的两个元素
i = i/2;
}
}
}从上往下的堆化方法
删除堆顶元素之后,需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后再迭代地删除第二大节点,以此类推,直到叶子节点被删除。
把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17public void removeMax() {
if (count == 0) return -1; // 堆中没有数据
a[1] = a[count];
--count;
heapify(a, count, 1);
}
private void heapify(int[] a, int n, int i) { // 自上往下堆化
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}
一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。
如何基于堆实现排序?
建堆
将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。
第一种是在堆中插入一个元素的思路。尽管数组中包含 n 个数据,假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,调用插入操作,将下标从 2 到 n 的数据依次插入到堆中。
第二种实现思路是从后往前处理数组,并且每个数据都是从上往下堆化。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16private static void buildHeap(int[] a, int n) {
for (int i = n/2; i >= 1; --i) {
heapify(a, n, i);
}
}
private static void heapify(int[] a, int n, int i) {
while (true) {
int maxPos = i;
if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
if (maxPos == i) break;
swap(a, i, maxPos);
i = maxPos;
}
}对下标从 n/2 开始到 1 的数据进行堆化,下标是 n/2+1 到 n 的节点是叶子节点,我们不需要堆化
对于完全二叉树来说,下标从 n/2+1 到 n 的节点都是叶子节点
建堆操作的时间复杂度:
因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k 成正比。
因为 h=log2n,代入公式 S,就能得到 S=O(n),所以,建堆的时间复杂度就是 O(n)。
排序
建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。
然后再通过堆化的方法,将剩下的 n−1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n−1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。
1
2
3
4
5
6
7
8
9
10// n表示数据的个数,数组a中的数据从下标1到n的位置。
public static void sort(int[] a, int n) {
buildHeap(a, n);
int k = n;
while (k > 1) {
swap(a, 1, k);
--k;
heapify(a, k, 1);
}
}堆排序的时间复杂度:
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。
问题:实际开发中,为什么快速排序要比堆排序性能好?
堆排序数据访问的方式没有快速排序友好
对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序
对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。
但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。
堆的应用
优先级队列
在优先级队列中,数据的出队顺序不是先进先出,而是按照优先级来,优先级最高的,最先出队。
往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。
合并有序小文件
假设有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。希望将这些 100 个小文件合并成一个有序的大文件。
将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将 100 个小文件中的数据依次放入到大文件中。
高性能定时器
假设有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如 1 秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。
但是,这样每过 1 秒就扫描一遍任务列表的做法比较低效,主要原因有两点:第一,任务的约定执行时间离当前时间可能还有很久,这样前面很多次扫描其实都是徒劳的;第二,每次都要扫描整个任务列表,如果任务列表很大的话,势必会比较耗时。
按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。
定时器拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。
这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。
定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。
当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。这样,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。
利用堆求 Top K
针对静态数据集合:数据集合事先确定,不会再变
维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。
遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,时间复杂度就是 O(nlogK)。
针对动态数据集合:数据集合事先并不确定,有数据动态地加入到集合中
一个数据集合中有两个操作,一个是添加数据,另一个询问当前的前 K 大数据。如果每次询问前 K 大数据,我们都基于当前的数据重新计算的话,那时间复杂度就是 O(nlogK),n 表示当前的数据的大小。
一直维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前 K 大数据,我们都可以立刻返回。
利用堆求中位数
维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。
如果有 n 个数据,n 是偶数,我们从小到大排序,那前 n/2 个数据存储在大顶堆中,后 n/2 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 n/2+1 个数据,小顶堆中就存储 n/2 个数据。
如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则,我们就将这个新数据插入到小顶堆。
可能出现,两个堆中的数据个数不符合前面约定的情况:从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。
Trie树
Trie 树,也叫“字典树”。顾名思义,它是一个树形结构。它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。
有 6 个字符串,它们分别是:how,hi,her,hello,so,see。希望在里面多次查找某个字符串是否存在。
对这 6 个字符串做一下预处理,组织成 Trie 树的结构,之后每次查找,都是在 Trie 树中进行匹配查找。
Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起。
根节点不包含任何信息。每个节点表示一个字符串中的字符,从根节点到红色节点的一条路径表示一个字符串(注意:红色节点并不都是叶子节点)。
Trie 树构造的分解过程
如何实现一棵 Trie 树?
Trie 树主要有两个操作
- 一个是将字符串集合构造成 Trie 树。这个过程分解开来的话,就是一个将字符串插入到 Trie 树的过程。
- 另一个是在 Trie 树中查询一个字符串。
借助散列表的思想,通过一个下标与字符一一映射的数组,来存储子节点的指针
1 |
|
1 |
|
复杂度分析
时间复杂度
构建 Trie 树的过程,需要扫描所有的字符串,时间复杂度是 O(n)(n 表示所有字符串的长度和)
每次查询时,如果要查询的字符串长度是 k,只需要比对大约 k 个节点,就能完成查询操作。跟原本那组字符串的长度和个数没有任何关系。所以说,构建好 Trie 树后,在其中查找字符串的时间复杂度是 O(k),k 表示要查找的字符串的长度。
空间复杂度
用数组来存储一个节点的子节点的指针。如果字符串中包含从 a 到 z 这 26 个字符,那每个节点都要存储一个长度为 26 的数组,并且每个数组元素要存储一个 8 字节指针(或者是 4 字节,这个大小跟 CPU、操作系统、编译器等有关)。而且,即便一个节点只有很少的子节点,远小于 26 个,比如 3、4 个,我们也要维护一个长度为 26 的数组。
在某些情况下,Trie 树不一定会节省存储空间。在重复的前缀并不多的情况下,Trie 树不但不能节省内存,还有可能会浪费更多的内存。
Trie 树与散列表、红黑树
Trie 树对要处理的字符串有极其严苛的要求
- 第一,字符串中包含的字符集不能太大。即便可以优化,但也要付出牺牲查询、插入效率的代价。
- 第二,要求字符串的前缀重合比较多,不然空间消耗会变大很多。
- 第三,如果要用 Trie 树解决问题,那就要自己从零开始实现一个 Trie 树,还要保证没有 bug,这个在工程上是将简单问题复杂化,除非必须,一般不建议这样做。
- 第四,通过指针串起来的数据块是不连续的,而 Trie 树中用到了指针,所以,对缓存并不友好,性能上会打个折扣。
针对在一组字符串中查找字符串的问题,我们在工程中,更倾向于用散列表或者红黑树
- 本文作者:bobo
- 本文链接:https://boyolo.github.io/article/23384.html
- 版权声明:本博客所有文章均采用 BY-NC-SA 许可协议,转载请注明出处!